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ABSTRACT bean pests including the soybean looper (Pseudoplusia
includens Walker) (All et al., 1989).In more than 25 yr since the discovery of soybean [Glycine max

There are several reasons for the difficulty experi-(L.) Merr.] resistance to defoliating insects, attempts to introgress
enced in breeding for PRI in soybean. Resistant germ-this trait into elite germplasm have been relatively unsuccessful. Resis-
plasm is of low agronomic quality. Insect resistance istance to defoliating insects in soybean is expressed as a combination

of antibiosis (toxicity) and antixenosis (nonpreference). Both of these inherited quantitatively in all three resistant PIs (Sisson
resistance modes are inherited quantitatively in soybean. The objec- et al., 1976; Luedders and Dickerson, 1977; Rufener et
tives of this study were (i) to use restriction fragment length polymor- al., 1989; Kenty et al., 1996), making full introgression
phism (RFLP) maps to identify quantitative trait loci (QTLs) in soy- difficult and increasing the potential for inferior yield
bean for antibiosis against corn earworm (CEW) (Helicoverpa zea through linkage drag (Zeven et al., 1983; Young and
Boddie), (ii) to determine the relative magnitude, gene action, and Tanksley, 1989). Resistance in these PIs is expressed
genomic locations of these QTLs, and (iii) to compare them to pre-

through two distinct mechanisms; antibiosis (Painter,viously detected soybean antixenosis QTLs. Restriction fragment
1951; Lambert and Kilen, 1984a) and antixenosis (orlength polymorphism maps were constructed in three soybean F2
nonpreference) (Clark et al., 1972; Kogan and Ortman,populations segregating for antibiosis against CEW: ‘Cobb’ 3
1978). Antibiosis describes insect resistance in whichPI171451, Cobb 3 PI227687, and Cobb 3 PI229358. Antibiosis was
feeding on the plant results in mortality or disruptionmeasured as larval weight gain in a detached leaf assay. The RFLP

data were associated with insect bioassay data to detect QTLs for of growth, development, or physiology in the insect.
antibiosis in each cross. Variance component heritability estimates Antixenosis, or nonpreference, describes resistance in
for antibiosis in the three crosses were 54, 42, and 62% in Cobb 3 which the insect is either repelled from or not attracted
PI171451, Cobb 3 PI227687, and Cobb 3 PI229358, respectively. An to its normal host plant. Antibiosis and antixenosis can
antibiosis QTL on Linkage Group (LG) M was detected in both be assayed separately, although their effects may over-
Cobb 3 PI171451 and Cobb 3 PI229358 (R2 values of 28 and 22%, lap (i.e., an antibiotic chemical may also repel). Soybean
respectively). An antixenosis QTL was also significant at this location breeding programs which have worked with PRI havein the same two crosses. This was the only insect-resistance QTL that

primarily selected lines based on assays for only onewas detected for both antibiosis and antixenosis. Antibiosis QTLs
of the two resistance mechanisms, perhaps under thewere also detected on LGs F and B2 in Cobb 3 PI227687 (R2 5 33
assumption that they are genetically indistinct. How-and 12%, respectively), and LGs G and J in Cobb 3 PI229358 (R2 5
ever, the genetic independence of antibiosis and anti-19% for each). Antibiosis was conditioned by the PI (resistant parent)

allele at the QTLs on LGs G, M, and B2, whereas the susceptible xenosis in PRI has been suggested for some time
parent, Cobb, provided antibiosis alleles at the QTLs on LGs F and J. (Painter, 1951; Manglitz and Danielson, 1994). Through

the detection of QTLs contributing to antibiosis against
defoliating insects in soybean and comparison of such
QTLs to those previously detected for soybean anti-Plant resistance to insects (PRI) has been a diffi-
xenosis (Rector et al., 1998, 1999), we will attempt tocult trait for soybean breeders to efficiently intro-
show that the failure of efficacious introgression of PRIgress into elite cultivars. In more than 25 yr since high
into soybean cultivars may be due in part to the lacklevels of PRI were discovered in the soybean plant intro-
of selection for both resistance components.ductions PI171451, PI227687, and PI229358 (Van Duyn

Quantitative traits can be dissected into their individ-et al., 1971), only three soybean cultivars have been
ual Mendelian components by statistically associatingreleased with these PIs in their parentage (Bowers, 1990;
their inheritance with that of markers on a genetic mapHartwig et al., 1990, 1994). None of these cultivars com-
(Thoday, 1961; Paterson et al., 1988). The advent ofbines high levels of PRI with competitive yields and
DNA marker technology in genetic mapping (Botsteinnone is popular among soybean growers today. Insect
et al., 1980; Williams et al., 1990; Akkaya et al., 1992; Vosresistance in these PIs has been demonstrated against
et al., 1995) has allowed the construction of saturateda number of defoliating insect species (Luedders and
genetic maps in many crop species (O’Brien, 1993) in-Dickerson, 1977; Lambert and Kilen, 1984a; All et al.,
cluding soybean (Shoemaker and Specht, 1995; Keim1989) including the corn earworm, a common pest of
et al., 1997; Cregan et al., 1999), and the identificationsoybean in the southeastern USA. Resistance against
of QTLs for a variety of agronomically important traitsCEW has been closely correlated with other major soy-
including CEW antixenosis resistance in soybean (Rec-
tor et al., 1998, 1999). Molecular markers have also been
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tal design for Crosses 1 and 2 (a total of 18 leaves tested inemployed to study the quantitative inheritance of PRI
each F2:3 line) and four times for Cross 3 (24 leaves tested inin several other crop species including maize (Zea mays
each F2:3 line).L.) (Byrne et al., 1997), mungbean (Vigna radiata L.

In initial experiments (data not shown) three different pa-Wilczek) (Young et al., 1992), potato (Solanum tubero-
rameters, larval mortality, larval weight gain, and larval headsum L.) (Yencho et al., 1996), and tomato (Lycopersicon capsule width, were tested to measure antibiosis against CEW.

esculentum Miller) (Maliepaard et al., 1995), although Weight gain and mortality differed significantly (P , 0.05)
none of these studies sought to specifically compare between the parents of all three crosses, while head capsule
antibiosis and antixenosis QTLs. width differed only between Cobb and PI229358. Based on

The objectives of this study were (i) to identify genetic differences between the parents of each cross and preliminary
data in F2:3 lines, larval weight gain was chosen to measure ofmarkers associated with QTLs for antibiosis in soybean
antibiosis for this experiment.PI171451, PI227687, and PI229358; (ii) to determine

After feeding, larvae were frozen and weighed. The totaltheir relative magnitudes, gene action, and genomic lo-
weight of all surviving larvae was recorded for each dish. Thecations; and (iii) to compare them to markers previously
mean of the total larval weights from each line was calculatedassociated with antixenosis QTLs in soybean (Rector
for each replicate and least square means for each line wereet al., 1998, 1999). calculated to account for missing data (PROC GLM; SAS
Institute, 1988). Variance component heritability estimates

MATERIALS AND METHODS (h2) were calculated for each population from F2:3 family means
based on the same selection unit used in the larval weightRestriction fragment length polymorphism maps were con-
gain assay (Fehr, 1987). Least square mean data were associ-structed using F2 populations of crosses between an insect-
ated with RFLP marker data to detect marker–QTL linkage.susceptible soybean cultivar, Cobb, and three insect-resistant
Cosegregation of RFLP markers with antibiosis QTLs wassoybean plant introductions: PI171451, PI227687, and
detected by interval mapping (Lander and Botstein, 1989)PI229358. The mapping populations for Cobb 3 PI171451
with the computer program MAPMAKER/QTL (2.0 LOD(Cross 1), Cobb 3 PI227687 (Cross 2), and Cobb 3 PI229358
threshold; Lincoln et al., 1992). The LOD score peak was used(Cross 3) consisted of 110, 95, and 103 F2 plants, respectively.
to estimate the most likely QTL position on the RFLP linkageThe F2 plants from the three crosses were derived from seven,
map. The percentage of variance explained by each QTL (R2)eight, and four F1 plants, respectively, and were grown at the
and the additive (a) and dominance (d) effects were estimatedUniversity of Georgia Plant Sciences Farm near Athens, GA
at each maximum likelihood QTL peak using the TRY func-in 1993. Leaves were harvested from F2 plants for DNA isola-
tion of the MAP command in MAPMAKER/QTL. The aver-tion. At maturity, seeds from each F2 plant were bulked to
age degree of dominance for each QTL was calculated as thecreate F2:3 lines.
ratio d/a and this value was used to estimate the gene actionDNA isolation, Southern blotting, and hybridization proce-
(e.g., additive, dominant, recessive) of a QTL. Marker–QTLdures were performed as previously described by Lee et al
relationships were confirmed using a general linear model(1996). Approximately 400 probes from various sources, in-
(PROC GLM; P , 0.01; SAS Institute, 1988) in which thecluding cDNA and genomic clones of soybean and other culti-
genotypic class (i.e., AA, Aa, aa) of the RFLP marker wasvated legumes, were used to screen for RFLP between Cobb,
the predictor variable and the mean larval weight gain dataPI171451, PI227687, and PI229358. Five restriction enzymes
was the response variable. Markers which did not display(DraI, EcoRI, EcoRV, HindIII, and TaqI) were used to iden-
normal segregation (1:2:1) were not accepted (X 2 , 0.05) astify RFLP. Polymorphic probes were used for genetic map-
significant marker–QTL associations. Alignment of linkageping. Genetic linkage was determined using the computer
groups in comparative mapping was contingent upon linkagemapping software MAPMAKER/EXP (Lander et al., 1987)
groups sharing markers which were mapped using the sameusing the Haldane mapping function with a minimum loga-
restriction enzyme and restriction fragment. Multiple regres-rithm of the odds (LOD) score of 3.0 to establish linkage at
sion analysis was performed on all significant markers withina maximum distance of 50 centiMorgans (cM). All named LG
each cross to estimate total phenotypic variance explained.on the maps of all three crosses were anchored to the USDA-

ARS/ISU map based on the matching of RFLP allele enzyme
and band-size information from both parents of each cross

RESULTS AND DISCUSSION(data not shown). Linkage group names correspond with those
found on the recently integrated soybean simple sequence Restriction fragment length polymorphism maps
repeat (SSR)/RFLP map (Cregan et al., 1999). were constructed in Crosses 1, 2, and 3. The RFLP map

A larval weight gain assay, adapted from a previously de- in Cross 1 had 85 markers on 21 LGs with 15 markersscribed technique (Lambert and Kilen, 1984a), was employed
which did not link to any others. This map covered 1113to measure antibiosis. In each of our three populations, six
cM. In Cross 2, the RFLP map had 120 markers on 26plants from each F2:3 line and each of the two parents were
LGs with 13 unlinked markers. This map had 1470 cM.grown to the V4 growth stage (Fehr and Caviness, 1977) in a

1-L styrofoam cup under a 15:9 h (light/dark) photoperiod to The Cross 3 map had 129 RFLP markers on 30 LGs
prevent flowering. Leaflets from the most recent fully ex- with 10 unlinked markers and 1566 cM.
panded trifoliolate of each greenhouse-grown V4 plant were In Cross 1, there were small, isolated areas of abnor-
detached for insect infestation. An experimental unit consisted mal RFLP marker segregation that were localized to
of one leaf from each of the six plants that represented an specific regions of several linkage groups. Certain F1:2F2:3 or parental line. Three neonate CEW larvae were placed families did not segregate at all for these markers andon the detached leaflets which were kept turgid with moistened

one F1:2 family segregated 1:1, while three of the sevenfilter paper and sealed inside petri plates with parafilm. Larvae
F1:2 families (approximately half of the total number ofwere allowed to feed until the leaves in any one of the petri
F2 individuals) showed a normal 1:2:1 segregation. Forplates were completely consumed. The experiment was repli-

cated three times in a randomized complete block experimen- these markers, only the data from normally segregating
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F1:2 families were used for mapping purposes and none
of these markers were accepted as significant in QTL
detection. The antibiosis data suggest that there is no
correlation between this abnormal segregation and the
incidence of insect resistance QTLs. No such abnormal
regions were detected in Crosses 2 or 3.

Transgressive segregation for antibiosis was observed
in each of the three crosses (Fig. 1). In Cross 1, the
mean larval weight gain for larvae fed on Cobb and
PI171451 was 18.8 and 6.2 mg, respectively. The range
among the F2-derived lines was from 2.4 to 31.4 mg. In
Cross 2, the means for Cobb and PI227687 were 49.6
and 33.3 mg, respectively. The range in this cross was
from 15.2 to 84.0 mg. In Cross 3, the means for Cobb
and PI229358 were 16.3 and 5.7 mg, respectively, and
the range among the F2-derived lines was from 2.2 to 22.7
mg. The larger weights in Cross 2, relative to Crosses 1
and 3, were due to an unexpected rise in laboratory
temperature during the Cross 2 experiment. However,
the Cross 2 parent means were significantly different
and the population distribution was qualitatively similar
to that of Crosses 1 and 3 (Fig. 1). Therefore, the data
were considered suitable for QTL analysis.

A QTL for antibiosis was detected in the interval
between markers A584V and A226H-1 on LG M in
both Crosses 1 and 3 (Table 1). These markers were
polymorphic and mapped to the same genomic location
in Cross 2, but were not associated with insect resistance
in that cross (Fig. 2). This QTL accounted for 28% of
the phenotypic variance (R2) for antibiosis in Cross 1
and 22% of the phenotypic variance for antibiosis in
Cross 3. Heritability estimates (h2) for this trait in
Crosses 1 and 3 were 54 and 62%, respectively. In both
crosses, resistance was provided by the PI allele and
was partially recessive (Table 1). Marker A584V was
also associated with a major antixenosis QTL in Crosses
1 and 3, but not Cross 2 (Rector et al., 1998, 1999). It Fig. 1. Distribution of F2-derived lines of the crosses Cobb 3

PI171451, Cobb 3 PI227687, and Cobb 3 PI229358 based on meanis possible that it is the same QTL that is being detected
larval weight gain of corn earworm fed on these lines.with both the antibiosis and antixenosis bioassays.

Two more QTLs were detected in Cross 3 (Table 1).
detected in this study with insect resistance genes thatThey were in the interval between markers L183H and
have been reported in mungbean (Young et al., 1992)L002H on LG G and between markers A064V and
and cowpea [V. unguiculata (L.) Walpers] (Myers etK401H on LG J. The QTL on LG G explained 19%
al., 1996). Insect resistance genes in these two legumeof the phenotypic variation for antibiosis in this cross.
species could not be associated with any of the linkageResistance is conditioned by the PI229358 allele and is
groups containing soybean antibiosis QTLs, based onpartially dominant. The QTL on LG J also explains
comparative mapping between soybean and mungbean19% of the phenotypic variation for the trait. Resistance
(Boutin et al., 1995) and between soybean, mungbean,at this QTL is conditioned by the Cobb allele and is
and cowpea (Menancio-Hautea et al., 1993).dominant.

The only QTL for antibiosis that was detected inTwo QTLs for antibiosis were detected in Cross 2
(Table 1). These were on LG F, in the interval between more than one genotype was the QTL linked to marker

A584V on LG M (Table 1). This was also the onlymarkers A083I and Cr207V, and on LG B2, between
markers A343V-2 and K411T-1. They accounted for 33 marker that was associated with both antibiosis and

antixenosis (Rector et al., 1999). All other soybean in-and 12% of the phenotypic variance for antibiosis in
Cross 2, respectively. The heritability estimate for anti- sect resistance QTLs that have been detected condition

either antibiosis or antixenosis but not both (Rector etbiosis in this cross was 42%. Resistance from the QTL
on LG F is conditioned by the Cobb allele and is domi- al., 1998, 1999). It is interesting to note that antibiosis

at this QTL is partially recessive (Table 1), while anti-nant, whereas resistance from the QTL on LG B2 is
provided by the PI227687 allele and is partially xenosis at this QTL is inherited additively (Rector et

al., 1999). This may reflect a qualitative difference indominant.
Attempts were made to associate the antibiosis QTLs the two bioassays or the presence of two separate QTLs,
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Table 1. Restriction fragment length polymorphism (RFLP) markers associated with antibiosis against corn earworm in three soybean
populations, based on MAPMAKER/QTL analysis.

Cobb 3 PI171451 Cobb 3 PI227687 Cobb 3 PI229358
(Cross 1) (Cross 2) (Cross 3)

Map interval Linkage QTL QTL QTL
(cM) group pos.† LOD R2 a‡ d/a§ pos.† LOD R2 a d/a pos.† LOD R2 a d/a

% % %
A343V-2..K411T-1 (30.6) B2 – NS¶ – – – 1.5 2.2†† 12 26.4 0.25 – NS – – –
A083I..Cr207V (46.8) F – NP# – – – 28.0 3.8†† 33 7.6‡‡ 1.27 – NP – – –
L183H..L002H (13.2) G – NP – – – – NP – – – 6.0 3.8†† 19 22.7 0.37
A064V..K401H (40.8) J – NS – – – – NS – – – 34.0 2.8†† 19 2.6‡‡ 20.01
A584V..A226H-1 (23.8) M 8.0 5.0†† 28 23.5 20.87 – NS – – – 1.5 4.8†† 22 22.9 20.45

† Distance of QTL peak from first marker listed.
‡ Average change in larval weight gain for each PI allele.
§ Average degree of dominance for each allele; d 5 dominance effects, a 5 additive effects.
¶ NS 5 interval was polymorphic but not significantly associated with antibiosis.
# NP 5 no polymorphism was detected at this interval in this cross.
†† Significance confirmed with analysis of variance (P , 0.01).
‡‡ Resistance allele from Cobb.

perhaps in a gene family. Computer simulations using The resistance allele from Cobb on LG J was detected
6.8 cM from marker K401H in Cross 3. This region ofsmall populations (100 F2 progeny) to search for QTLs

with small effects (,10% R2 per QTL) suggest that LG J is represented in both Crosses 1 and 2 (Fig. 2). In
Cross 1, the region was not considered because it iserrors in estimating variance explained and degree of

dominance can be great (Beavis, 1998). Thus, the flanked by two markers, K401H and A458V, which both
showed abnormal segregation (see above). In Cross 2,smaller QTL detected in Cross 2 could be a false posi-

tive, and comparisons of QTL gene action between pop- a subthreshold LOD peak (1.98) is evident at marker
A963I-2, which is 7.7 cM from K401H. The F test atulations should be made with caution.

Two antibiosis QTLs, on LG ‘F’ in Cross 2 and on this marker was also just below threshold (P 5 0.014).
These data, combined with the mean larval weight dataLG ‘J’ in Cross 3, derived resistance from the Cobb

(susceptible parent) allele. In Cross 2, resistance comes for the three genotypic classes at this marker (data not
shown), suggest that the Cobb resistance allele may befrom the Cobb allele at a QTL between markers A083I

and Cr207V (Table 1; Fig. 2). Both PI171451 and evident in this cross as well, but with a smaller effect
than in Cross 3. The difference in detection at this locusPI229358 share the same RFLP alleles as Cobb for these

two markers (data not shown), so it is possible that these may also be due to inadequate sampling of the gamete
pools due the small population sizes (Beavis, 1998).genotypes also share the resistance allele at the QTL.

Fig. 2. Confidence intervals for corn earworm weight gain resistance QTLs in three soybean crosses. The large, shaded bars represent soybean
linkage groups with LG designations adapted from the integrated soybean restriction fragment length polymorphism (RFLP)/simple sequence
repeat (SSR) map (Cregan et al., 1999). RFLP markers in normal typeface are included from that map as evenly spaced reference points.
RFLP markers listed in boldface are those that were found closest to the quantitative trait loci logarithm of the odds peak(s) and are specific
to the maps constructed for this study. Vertical lines to the left of each linkage group approximate the portion(s) of each linkage group.



RECTOR ET AL.: QTL FOR ANTIBIOSIS RESISTANCE TO CORN EARWORM IN SOYBEAN 237

Only one antibiosis QTL was detected in Cross 1. A for both antibiosis and antixenosis. These results suggest
that the two modes of PRI should be considered ascomparison of the R2 value of this QTL (28%) and the

heritability estimate in this cross (54%) suggests that distinct traits in a soybean breeding program. Marker-
assisted selection for PRI in soybean involving the mostother antibiosis QTLs exist in this cross. As discussed

above, it is possible that PI171451 possesses the resis- robust marker-QTL combinations reported here and
previously should facilitate the pyramiding of insect re-tance allele that was detected on LG J in Cross 3. How-

ever, no QTL can be confidently detected in that region sistance genes from Cobb, PI171451, PI227687, and
PI229358.unless markers with normal segregation ratios can be

mapped there. It may be necessary to do so in a separate
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